skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jones, Miriam C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. QSR (Ed.)
    Large proglacial lakes could have been a significant methane source during the last deglaciation. Today, proglacial lakes are small and mostly limited in the northern hemisphere to the margins of ice sheets in Greenland, Alaska, and Canada, but much larger proglacial lakes collectively flooded millions of square kilometers in the northern hemisphere over the last deglacial period. We synthesize new and existing methane flux measurements from modern proglacial lakes in Alaska and Greenland and use these data together with reconstructed lake area and bathymetry, new paleorecords of sediment organic geochemistry, carbon accumulation, and other proxies to broadly constrain the possible deglacial methane dynamics of a single large North American proglacial lake, Lake Agassiz. While large influxes of glaciogenic material contributed to rapid organic carbon burial during initial lakes phases, limited bioavailability of this carbon is suggested by its likely subglacial origin and prior microbial processing. Water depths of >20 m across 37–90% of the lake area facilitating significant oxidation of methane within the water column further limited emissions. Later phases of lake lowering and subsequent re-expansion into shallow aquatic and subaerial environments provided the most significant opportunity for methane production according to our estimates. We found that Lake Agassiz was likely a small source [0.4–2.7 Tg yr−1 mean (0.1–9.9 Tg yr−1 95% CI)] of methane during the last deglaciation on par with emissions from modern wildfires. Although poor constraints of past global proglacial lake areas and morphologies currently prevent extrapolation of our results, we suggest that these systems were likely an additional source of methane during the last deglacial transition that require further study. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Atmospheric methane (CH4) concentrations have gone through rapid changes since the last deglaciation; however, the reasons for abrupt increases around 14,700 and 11,600 years before present (yrs BP) are not fully understood. Concurrent with deglaciation, sea-level rise gradually inundated vast areas of the low-lying Beringian shelf. This transformation of what was once a terrestrial-permafrost tundra-steppe landscape, into coastal, and subsequently, marine environments led to new sources of CH4 from the region to the atmosphere. Here, we estimate, based on an extended geospatial analysis, the area of Beringian coastal wetlands in 1000-year intervals and their potential contribution to northern CH4 flux (based on present day CH4 fluxes from coastal wetland) during the past 20,000 years. At its maximum (∼14,000 yrs BP) we estimated CH4 fluxes from Beringia coastal wetlands to be 3.5 (+4.0/-1.9) Tg CH4 yr−1. This shifts the onset of CH4 fluxes from northern regions earlier, towards the Bølling-Allerød, preceding peak emissions from the formation of northern high latitude thermokarst lakes and wetlands. Emissions associated with the inundation of Beringian coastal wetlands better align with polar ice core reconstructions of northern hemisphere sources of atmospheric CH4 during the last deglaciation, suggesting a connection between rising sea level, coastal wetland expansion, and enhanced CH4 emissions. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. ABSTRACT The Yukon‐Kuskokwim Delta (YKD), covering ~75,000 km2of Alaska's discontinuous permafrost zone, has a historic (1902–2023) mean annual air temperature of ~−1°C and was previously thought to lack ice wedge networks. However, our recent investigations near Bethel, Alaska, revealed numerous near‐surface ice wedges. Using 20 cm resolution aerial orthoimagery from 2018, we identified ~50 linear km of ice wedge troughs in a 60 km2study area. Fieldwork in 2023 and 2024 confirmed ice wedges up to ~1.5 m wide and ~2.5 m in vertical extent, situated on average 0.9 m below the tundra surface (n = 29). Ground‐penetrating radar (GPR) detected additional ice wedges beyond those visible in the remote sensing imagery, suggesting an underestimation of their true abundance. Coring of polygonal centers revealed late‐Quaternary deposits, including thick early Holocene peat, late‐Pleistocene ice‐rich silts (reworked Yedoma), charcoal layers from tundra fires, and the Aniakchak CFE II tephra (~3600 cal yrs BP). Stable water isotopes from Bethel's wedge ice (mean δ18O = −15.7 ‰, δ2H = −113.1 ‰) indicate a relatively enriched signature compared to other Holocene ice wedges in Alaska, likely due to warmer temperatures and maritime influences. Expanding our mapping across the YKD using high‐resolution satellite imagery from 2012 to 2024, we estimate that the Holocene ice wedge zone encompasses ~30% of the YKD tundra region. Our findings demonstrate that ice wedge networks are more widespread across the YKD than previously recognized, emphasizing both the resilience and vulnerability of the region's warm, ice‐rich permafrost. These insights are crucial for understanding permafrost responses to climate change and assessing agricultural potential and development in the region. 
    more » « less
  4. Abstract Climate warming threatens to destabilize vast northern permafrost areas, potentially releasing large quantities of organic carbon that could further disrupt the climate. Here we synthesize paleorecords of past permafrost-carbon dynamics to contextualize future permafrost stability and carbon feedbacks. We identify key landscape differences between the last deglaciation and today that influence the response of permafrost to atmospheric warming, as well as landscape-level differences that limit subsequent carbon uptake. We show that the current magnitude of thaw has not yet exceeded that of previous deglaciations, but that permafrost carbon release has the potential to exert a strong feedback on future Arctic climate as temperatures exceed those of the Pleistocene. Better constraints on the extent of subsea permafrost and its carbon pool, and on carbon dynamics from a range of permafrost thaw processes, including blowout craters and megaslumps, are needed to help quantify the future permafrost-carbon-climate feedbacks. 
    more » « less
  5. Soil carbon (C) in permafrost peatlands is vulnerable to decomposition with thaw under a warming climate. The amount and form of C loss likely depends on the site hydrology following permafrost thaw, but antecedent conditions during peat accumulation are also likely important. We test the role of differing hydrologic conditions on rates of peat accumulation, permafrost formation, and response to warming at an Arctic tundra fen using a process-based model of peatland dynamics in wet and dry landscape settings that persist from peat initiation in the mid-Holocene through future simulations to 2100 CE and 2300 CE. Climate conditions for both the wet and dry landscape settings are driven by the same downscaled TraCE-21ka transient paleoclimate simulations and CCSM4 RCP8.5 climate drivers. The landscape setting controlled the rates of peat accumulation, permafrost formation and the response to climatic warming and permafrost thaw. The dry landscape scenario had high rates of initial peat accumulation (11.7 ± 3.4 mm decade −1 ) and rapid permafrost aggradation but similar total C stocks as the wet landscape scenario. The wet landscape scenario was more resilient to 21st century warming temperatures than the dry landscape scenario and showed 60% smaller C losses and 70% more new net peat C additions by 2100 CE. Differences in the modeled responses indicate the largest effect is related to the landscape setting and basin hydrology due to permafrost controls on decomposition, suggesting an important sensitivity to changing runoff patterns. These subtle hydrological effects will be difficult to capture at circumpolar scales but are important for the carbon balance of permafrost peatlands under future climate warming. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)